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Molecular dynamics simulations are used to study the coil-globule transition for a system composed
of a bead-spring polymer immersed in an explicitly modeled solvent. Two different versions of the
model are used, which are differentiated by the nature of monomer-solvent, solvent-solvent, and
nonbonded monomer-monomer interactions. For each case, a model parameter # determines the
degree of hydrophobicity of the monomers by controlling the degree of energy mismatch between
the monomers and solvent particles. We consider a #-driven coil-globule transition at constant
temperature. The simulations are used to calculate average static structure factors, which are then
used to determine the scaling exponents of the system in order to determine the $-point values #$
separating the coil from the globule states. For each model we construct coil-globule phase diagrams
in terms of # and the particle density %. The results are analyzed in terms of a simple Flory-type
theory of the collapse transition. The ratio of #$ for the two models converges in the high density
limit exactly to the value predicted by the theory in the random mixing approximation. Generally,
the predicted values of #$ are in reasonable agreement with the measured values at high %, though
the accuracy improves if the average chain size is calculated using the full probability distribution
associated with the polymer-solvent free energy, rather than merely using the value obtained from
the minimum of the free energy. © 2005 American Institute of Physics.
&DOI: 10.1063/1.1830435'

I. INTRODUCTION

The coil-globule transition was first predicted by
Stockmayer1 over four decades ago and was first observed
experimentally by Tanaka and co-workers two decades
later.2,3 This phenomenon is the dramatic reduction in the
average size of a single polymer chain in solution as the
solvent conditions are changed from ‘‘good’’ to ‘‘poor.’’ It
remains a subject of intense experimental and theoretical in-
terest, principally due to the qualitative similarity of this pro-
cess to protein folding, one of the most important unsolved
problems in molecular biology. A recent review by Baysal
and Karasz4 provides a thorough summary of the numerous
studies carried out on the coil-globule transition.

Early theoretical studies of the collapse transition gener-
ally fall within one of two categories. On one hand, theories
which follow the approach taken in the pioneering work by
Flory5 commence by constructing an expression for the
polymer-solvent system free energy which is characterized
by a single parameter describing the average physical size of
the polymer coil. Numerous theoretical studies have em-
ployed this approach.6–16 On the other hand, the theories of
Lifshitz and co-workers17–22 use a more complex order pa-
rameter of the spatial density distribution. More recently, the
methodology of integral equation theories, originally devel-
oped to study liquids, has been employed to study polymer
collapse23–25 in a manner which uses the monomer-solvent
and solvent-solvent interactions to calculate effective
monomer-monomer pair interactions. In addition, rigorous
calculations yielding exact results through a complete enu-
meration of polymer configurations have been applied to

study the collapse transition, though they have been limited
to very short chains and without direct incorporation of the
solvent.26–28

Monte Carlo and molecular dynamics !MD" computer
simulation methods have been used extensively to study the
coil-globule transition. A large majority of these studies have
employed implicit-solvent models, in that they consider iso-
lated single polymer chains in which the influence of the
solvent has been incorporated into effective monomer-
monomer pair interactions.29–53 Typically, these effective in-
teractions are not derived from any specific solvent in a rig-
orous manner. Consequently, subtle effects arising, for
example, from the packing of a specific solvent around the
polymer, cannot be investigated with such an approach. The
clear alternative is to employ simulation models which ex-
plicitly include the solvent particles. However, since an ac-
curate description of a liquid solvent requires high solvent
densities, the calculations unavoidably become extremely
time consuming. While such calculations were unfeasible in
the past, a number of studies of the coil-globule transition in
the presence of an explicit solvent have been reported in
recent years.54–61 However, it is still not possible to study
polymers of lengths that are anywhere near the limits pos-
sible for implicit-solvent models: typically, polymers in
explicit-solvent simulation studies are 102 monomers in
length or less, while simulations using polymer chains of 106
monomers have been reported in implicit-solvent studies.34
An alternative, hybrid approach uses an implicit-solvent
model polymer, but one in which the effective monomer-
monomer interactions have been calculated directly from a
specific solvent defined by monomer-solvent and solvent-
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solvent interactions. Monte Carlo simulation employing the
polymer reference interaction site model !PRISM theory"
!Ref. 62" has proven to be a useful method of this type to
study polymer collapse.63–65 On the other hand, the principal
advantage of this approach, namely, incorporating the sol-
vent into effective monomer-monomer pair interactions us-
ing the hypernetted chain approximation, may constitute a
rather severe approximation. As noted by Mendez et al.,66
for example, the resulting pair potentials tend to have deep
potential wells that lead to collapse under conditions where
the swollen coil state should be stable. In addition, compli-
cated effects due to many-body correlations cannot be accu-
rately accounted for with such a model.67 Consequently,
explicit-solvent models remain the preferred route for studies
of specific polymer-solvent systems wherever feasible.

In this study, we investigate the coil-globule transition of
a polymer chain immersed in an explicit solvent using MD
simulations. In light of the computational challenges de-
scribed above, which are imposed by using such a model, we
consider only a relatively short chain of 30 monomers. In
addition, for computational convenience, we employ a model
very similar to that used in Ref. 60: the model is character-
ized by a bead-spring model polymer, solvent particles that
are the same size as the monomers, and monomers and sol-
vent particles which each have only one interaction site.
Clearly, the model is not designed to emulate any chemically
specific polymer-solvent system; rather, we seek to elucidate
the generic behavior of the collapse transition, with an em-
phasis on quantifying the effects of varying the solvent den-
sity. Extensive simulations were carried out to accurately
trace out the coil-globule phase boundary. These results were
then compared with a simple Flory-type theory for the poly-
mer collapse transition in order to assess the range of validity
of the various approximations employed in the theory.

Section II describes in detail the two different versions
of the model polymer-solvent system employed in this study.
Section III A describes the procedure used to accurately lo-
cate the coil-globule transition point, while Sec. III B out-
lines the theory used to compare with the calculated phase
boundaries. The technical details of the MD simulations are
then given in Sec. IV. Section V presents and discusses the
main results of the study, and, finally, Sec. VI summarizes
the key conclusions.

II. MODEL

We consider a three-dimensional system composed of a
single linear fully flexible homopolymer chain immersed in
an explicitly modeled solvent. For computational conve-
nience, each solvent particle is chosen to have the same size
and mass as the monomers on the polymer. Particle interac-
tions are pairwise additive and depend on whether the par-
ticle is a monomer or a solvent particle. There are three
distinct types of nonbonded pair interactions: the monomer-
monomer potential uMM , the monomer-solvent potential
uMS , and the solvent-solvent potential uSS . In this study, we
consider two different polymer-solvent model systems,
henceforth referred to as models A and B, which are distin-
guished by the choice of these three nonbonded interactions.

In model A, the three interactions are given by

uMM!r "!uLJ!r ",

uSS!r "!uLJ!r ", !1"

uMS!r "!u#!r ",

where uLJ(r) is a truncated and shifted Lennard-Jones !LJ"
6-12 potential

uLJ!r "!ul j!r ""ul j!rc", r(rc

!0, r#rc , !2"

where

ul j!r "!4)! " *

r # 12"" *

r # 6$ , !3"

where * and ) are the usual LJ distance and energy param-
eters, respectively. We choose a cutoff distance of rc!3* .
Further, the potential u#(r) is defined to be

u#!r "!#u rep!r "$!1"#"uLJ!r ", !4"

where the steeply repulsive interaction u rep(r) is given by

u rep!r "!ul j!r "$) , r(rmin

!0, r+rmin , !5"

where rmin!21/6* , corresponding to the minimum in the po-
tential of Eq. !3". The parameter # appearing in Eq. !4" is
chosen to be in the range #!&0,1' .

Sample u#(r) pair potentials are shown in Fig. 1 for #
!0.0, 0.25, 0.5, 0.75, and 1.0 from bottom to top. Note that
the bottom curve in the figure for #!0 corresponds to the LJ
potential uLJ(r) of Eq. !2", while the top curve corresponds
to the potential u rep(r) in Eq. !5". As seen in the figure, the
effect of increasing # is to decrease the depth of the potential
well while maintaining the steeply repulsive component of
the potential. The potentials have been designed, in part, so
that an increase in # will trigger a collapse transition. It is
clear from a consideration of the choice of potentials in Eq.
!1" that the globular state of the polymer will become more
energetically favorable as # increases. For this reason, the
model parameter # controls the degree of hydrophobicity of
the polymer; consequently, we refer to # as the hydrophobic-
ity parameter.

In addition to the nonbonded interactions, there are in-
teractions between pairs of bonded monomers. We choose a
harmonic interaction of the form,

ub!r "! 1
2 kb!r"l0"2, !6"

FIG. 1. The pair potential u#(r) for values of #!0.0, 0.25, 0.5, 0.75, and
1.0 from bottom to top.
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where kb is the harmonic spring constant and l0 is the equi-
librium distance between bonded monomers. These param-
eters have values of kb*2/)!500 and l0!* .

In model B, the nonbonded interactions are chosen to be

uMM!r "!u1"#!r ",

uSS!r "!u rep!r ", !7"

uMS!r "!u rep!r ",

where u rep(r) is the repulsive interaction defined in Eq. !5".
Further, u1"#(r) is the potential given by Eq. !4" upon ex-
changing # with 1"# . Consequently, the depth of the poten-
tial well associated with u1"#(r) increases with increasing
#. Consideration of the potentials in Eq. !7" shows that in-
creasing #, as in model A, will increase the energy mismatch
between monomers and solvent particles, and consequently
make the globule state of the polymer increasingly energeti-
cally favorable. For this reason, # is a measure of the poly-
mer hydrophobicity for model B, as well.

The interaction between pairs of bonded monomers is
identical to that of model A, given in Eq. !6".

All quantities described in this paper are given in
Lennard-Jones reduced units. Specifically, distances are ex-
pressed in terms of *, energies in terms of ), temperature in
terms of kB /) , where kB is Boltzmann’s constant, and time
in terms of !m*2/) , where m is the mass of the each solvent
particle and monomer. Further, the density of the system is
defined to be the total particle number density, %!(N
$Ns)*3/V , where V is the volume of the system.

III. BACKGROUND THEORY
A. Locating the transition

In the limit of sufficiently long chain length, the physical
size of a polymer obeys the well-known scaling relation

R,N-. !8"

An important example of polymer size is the average radius
of gyration of the polymer R̄g defined as

R̄g.!/Rg
20.!1

N 1
n!1

N

/%R" n"/R" 0%20, !9"

where R" n is the position of monomer n , /R" 0 is the average
monomer position, N is the number of statistical segments of
the polymer, and where the angular brackets denote a statis-
tical averaging over polymer conformations. In the case of
ideal chains, i.e., model chains with no interactions between
nonbonded monomers, the scaling exponent is -!1/2. In
so-called good solvent conditions, the scaling exponent is
given by -20.588.68 In this case, the polymer chain is swol-
len; that is, it has a larger average physical size compared to
that of an ideal chain, resulting from excluded volume inter-
actions between monomers. This conformational state is of-
ten referred to as a ‘‘coil.’’ Conversely, in so-called poor
solvent conditions, the chain spans a smaller physical size
compared to that of an ideal chain, and is characterized by a
scaling exponent of -!1/3. If this collapsed state is liquid-
like, as opposed to solidlike, then it is referred to as a ‘‘glob-

ule.’’ Generally, the solvent conditions which determine the
conformational state of a polymer in solution for a real
physical system are determined by a complex interplay of the
monomer-monomer, monomer-solvent, and solvent-solvent,
interactions. The solvent conditions can be changed upon
variation of various system properties !e.g., temperature,
pH), which can then trigger a transition between the coil and
globule states. A useful measure of the location of the tran-
sition is the so-called $ point, close to which the polymer
behaves as though it were an ideal chain. In this study, we
use the ideal-chain condition -!1/2 as an operational defi-
nition of the coil-globule transition. Note that this condition
differs both from that for the true $ point, as well as from a
more rigorously defined criterion for the collapse transition
in the case of finite-length chains, as described below. Note,
as well, that all three criteria converge in the limit of long
chain length.

The static structure factor of a polymer chain can be
used to determine the conformational state of a polymer
chain. The structure factor is defined as

S!k" "!
1
N 1

n!1

N

1
m!1

N

/exp& ik"•!R" n"R" m"'0, !10"

where k" is the wave vector. For isotropic systems, the struc-
ture factor depends only on the magnitude of k" , and is given
by

S!k "!
1
N 1

m ,n & sin&k%R" m"R" n%'

k%R" m"R" n%
' . !11"

For the polymer chain considered in this study, the structure
factor satisfies the relation

S!k "3k"1/-, !12"

in the limit where Rg
"1%k%*"1, where * is simultaneously

the monomer size and the bond length. Note that this condi-
tion is only satisfied for long chains, N&1, for which Rg
&* . In the present case, where N!30, the chains are too
short to rigorously satisfy the condition. On the other hand,
as is evident in the sample calculated structure factor plotted
on the log-log graph in Fig. 2, there is a linear regime appar-
ent in the range defined by the less rigid criterion Rg

"1'k
'*"1. In this study we use the slope m of this linear regime
to calculate the scaling exponent according to -!"1/m .
While we expect there to be non-negligible finite-size ef-

FIG. 2. Sample polymer static structure factor. The curve shown in the
figure was obtained using the model A polymer-solvent model for a chain of
length N!30 with a solvent density of %!0.8 and a hydrophobicity param-
eter of #!0.
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fects, we expect the calculated coil-globule phase boundaries
to display the general qualitative features present for longer-
chain systems.

B. Comparing simulation results
to theoretical predictions

Some understanding of the significance of the simulation
results presented in this study can be gained from an analyti-
cal theoretical treatment of the polymer collapse transition.
Here, we consider only the simple Flory–Huggins !FH"
theory, in which the criterion for collapse is determined by
the well-known Flory 4 parameter, which in turn can be re-
lated to the parameters of the model polymer-solvent system.
Two different procedures have been used to map the model
parameters onto 4 for each of the two polymer-solvent model
systems. The details of these calculations are presented in
this section.

The theoretical foundations of the coil-globule transition
have been well established.16,19–22,69 The two main classes of
theories of the collapse transition follow the ideas of Flory5
and Lifshitz.70 In Flory-type theories of the collapse transi-
tion such as the one considered here, the polymer-solvent
free energy is written in terms of a single order parameter,
the expansion factor of the radius of gyration, while in
Lifshitz-type theories, a more complex order parameter of
the spatial density distribution is used. Following the ap-
proach of Flory, it can be shown that the free energy of a
polymer-solvent system can be written approximately as fol-
lows:

F!5"!Fel!5"$F int!5", !13"

where Fel(5) is the elastic free energy of the ideal chain and
where F int(5) is the contribution to the free energy from
particle interactions. The expansion coefficient 5 is defined
as

52.Rg
2//R0

20 !14"

and where /R0
20 is the average square radius of gyration of

the corresponding ideal chain, i.e., in the absence of non-
bonded interactions. An approximate expression for Fel(5) is
given by16

6Fel!5"!
9
4 !5"2$2 ln5", 5#1

!15"
!

72

4 !52"2 ln5", 5(1.

In the vicinity of the $ point, the chain is sufficiently large
that the interaction term F int(5) can be written as

6F int!5"!" B!N
v #5"3$" Cv2#5"6, !16"

where v is the excluded volume of each monomer. The first
and second terms correspond to two- and three-body effects,
respectively, arising from nonbonded interactions. Corre-
spondingly, B and C refer to second- and third-order virial
coefficients. Note that Eq. !16" is not expected to be valid in
the regime of high compaction, i.e., in the globule state.

The average swelling coefficient 5̄.!/520 is rigorously
determined from the condition that

5̄2!/520!
80

9d552 exp&"6F!5"'

80
9d5 exp&"6F!5"'

. !17"

Note that the discontinuity of Fel(5) at 5!1 in Eq. !15"
should be removed by shifting either function by the appro-
priate additive constant in order to employ it in the calcula-
tion of Eq. !17". On the other hand, for a sufficiently deep
free energy minimum, 5̄ is approximately given by the value
of 5 which minimizes F(5), and which, from Eqs. !13",
!15", and !16", is given by

72

2 !55"53"!
3B!N

v
$
6C
v2

5"3, 5+1,

!18"
3
2 !53"5"!

B!N
v

$
2C
v2

5"3, 5(1.

In the limit of large N , Eq. !18" predicts a swollen-coil scal-
ing exponent of -!3/5 for B#0, and a globule scaling ex-
ponent of -!1/3 for B(0. Thus, the $ point, defined to be
the conditions under which B!0, marks the location of the
coil-globule transition in the limit of large N . Note, however,
that experimentally observed collapse transitions for finite-
size polymers occurs at temperatures somewhat higher than
the $ temperature. The origin of this discrepancy can be un-
derstood from a more rigorous treatment for the criterion for
defining the collapse transition involving the balance be-
tween volume and surface contributions to the free energy of
a globule.69

For each domain of 5 considered in Eq. !18" the condi-
tion that the chain behaves like an ideal chain (5!1) yields
the following criterion:

B!"
2C
v
N"1/2. !19"

Although the true polymer collapse transition, the $ point,
and the ideal-chain condition all converge only in the limit
N→9 , in this study, we will treat the 5!1 condition as an
operational definition of the coil-globule transition.

For a polymer-solvent system at liquid-like solvent den-
sities, it is natural to employ the FH form of the coefficients
B and C:

B!v" 12"4 # , C!
v2

6 . !20"

In order to apply this theory to the simulation results of this
study, we must choose a mapping between the off-lattice
model employed in the simulations to the lattice model un-
derlying the FH theory. For an off-lattice model, the simplest
corresponding expression for the 4 parameter can be written
as

4!:)/kBT , !21"

where the energy mismatch :) is given by

:)! )̄MS"
1
2 ! )̄SS$ )̄MM". !22"
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The energy terms are defined as

)̄56!%(
0

9

dr47r2g56!r "u56!r ", !23"

where g56(r) is the radial distribution function between par-
ticles of type 5 and 6 . We employ the simple random mixing
approximation, whereby gMM(r)!gMS(r)!gSS(r).g%(r),
where the subscript on g%(r) is included to emphasize that in
general the distribution function will depend on the system
particle density. For the models defined in Sec. II, the expres-
sion for 4 can then be written as

4!
2#)%*3

gkBT
f !%", !24"

where g is a numeric factor with a value of g!2 for model
A and g!1 for model B, and where the dimensionless func-
tion f (%) is defined as

f !%")*3.(
0

9

dr47r2g%!r "&u rep!r ""uLJ!r "' . !25"

In order to determine the function f (%), we can make the
rather drastic but convenient choice to extend the random
mixing approximation in the dilute limit:

g%!r "!1 for r#*

!0 for r(* . !26"

In this case, we find that f (%)!a , where the constant a
!10.391 091.

The collapse transition considered in this study is driven
by variation of the hydrophobicity parameter # defined for
each of the models in Eq. !4". Thus, in the context of the
present theory, variation in # controls 4, and thus B , by
changing the energy mismatch factor :). We refer to the
value of # that satisfies the $ condition in Eq. !19" as #$ .
Using Eq. !20" and the expression for 4 in Eq. !24" we can
rewrite the criterion for the $ point in Eq. !19" as

#$!
kBT

ag%*3) " 12$
1
3!N # . !27"

In the limit of long chain length, N→9 , the second term in
the round brackets vanishes, and this becomes the # value
corresponding to the collapse transition where B!0.

Another possible mapping between 4 and # is suggested
in the paper by Mendez et al.,66 who recently developed an
integral equation theory for polymer solutions for the case of
explicit inclusion of solvent particles. In this study, the
PRISM theory is used to calculate pair radial distribution
functions and an effective monomer-monomer pair potential
describing the effects of purely repulsive interactions. In ad-
dition, the random phase approximation is used to build in
the effects of the attractive components of the potentials in
order to derive an expression for the spinodal condition for a
binary system. The latter calculations also use the approxi-
mation that the monomer/solvent volume change on mixing
at constant pressure is zero. Here, we consider a special case
of the theory in which we assume that the polymer-solvent
system is incompressible, and where we use the random mix-

ing approximation, g56(r)!g%(r) for 5, 6!M, S. How-
ever, unlike the the mapping used to derive Eq. !27", no
explicit form for g%(r) is assumed. Rather, it is determined
by the expression for the spinodal condition which was de-
rived in Ref. 71. Under these approximations, the Mendez
et al. showed that the spinodal condition satisfies a form con-
sistent with that appearing in the Flory–Huggins theory, with
a 4 parameter that can be calculated from the magnitudes of
the attractive components of the various interparticle interac-
tions. For the model systems considered in this study, this
corresponds to a 4 parameter given by

4!
327g%*3)#

9&kBT
, !28"

where % is the total particle !solvent and monomer" number
density, and where the factor g has values of g!2 for model
A and g!1 for model B. The details of this calculation are
presented in the Appendix. From Eq. !28", it is clear that this
mapping is consistent with the expectation that # controls the
degree of hydrophobicity of the polymer. Using Eq. !20" and
the expression for 4 in Eq. !28" we can rewrite the criterion
for the $ point in Eq. !19" as

#$!
kBT

bg%*3) " 12$
1
3!N # , !29"

where b!(327)/(9&)27.898 459.
Note that the expressions for #$ in Eqs. !27" and !29"

have exactly the same form and differ solely in terms of the
numeric prefactor. One consequence of this is that both theo-
ries predict that #$ is inversely proportional to the particle
density of the system. Note further that each theory also
predicts that the ratio of the values of #$ for the two models
satisfy r.#$

(B)/#$
(A)!2.

Four different procedures have been used to calculate
theoretical coil-globule phase boundaries for each of the two
model systems:

!I" Using Eq. !27". This employs the random mixing
approximation in the dilute limit in Eq. !26" with Eq. !24"
to relate # to 4 . In addition, it uses Eq. !19", which arises
from minimizing the free energy defined by Eqs. !13", !15",
and !16".

!II" Using Eq. !17" with the condition 5̄!1, rather than
Eq. !19", to impose the $ condition. Also, the same 4-# map-
ping as in !I" is employed.

!III" Using Eq. !29". This employs the procedure out-
lined in the Appendix to derive the relation between # and 4.
In addition, it uses Eq. !19", which arises from minimizing
the free energy defined by Eqs. !13", !15", and !16".

!IV" Using Eq. !17" with the condition 5̄!1, rather than
Eq. !19", to impose the $ condition. Also, the same 4-# map-
ping as in !III" is employed.

IV. SIMULATION DETAILS

We employ constant-energy MD simulations to study the
polymer-solvent model systems defined in Sec. II. We use a
cubic simulation cell with standard periodic boundary condi-
tions. The equations of motion were integrated using the
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velocity-Verlet algorithm, with a time step of :t!0.005.
Verlet neighbor lists were used to improve the efficiency of
the calculations. All simulations were carried out at a kinetic
temperature of T!1.0. Velocity rescaling was used to set the
temperature.

Most simulations employed polymers of length N!30
monomers immersed in a bath of Ns solvent particles, such
that the total number of particles was N$Ns!1000. For any
particular density, the monomers and solvent particles were
initially placed on a cubic lattice. For convenience, the initial
polymer chain conformation was composed of straight par-
allel segments along one face of the simulation cell wrapping
through the periodic boundaries. The system was next equili-
brated for a considerable time, :teq+2500–5000, which was
followed by a production run of :t!10 000–20 000.

Individual simulations were carried out on the nodes of a
92-processor beowulf cluster with processor speeds ranging
from 1.4–2.0 GHz, each requiring 224–48 h of CPU time.
Typically, average static structure factors were obtained from
averaging the results of 10–12 simulations, each correspond-
ing to the same system parameters, but with different initial
conditions in order to achieve statistical independence. The
average structure factor was then used to determine the scal-
ing exponent -. Typically, five to seven sets of these simula-
tions for various values of the hydrophobicity parameter #
were used to determine the value of #$ , corresponding to a
single point on a phase diagram for each of the two models.
We emphasize that this constitutes an enormous computa-
tional effort, which was nevertheless required to obtain a
sufficient level of statistical accuracy.

V. RESULTS AND DISCUSSION

We first consider the simulation results for the model A
polymer-solvent system. Figure 3 shows the average square
of the radius of gyration /Rg

20 versus # for four particle den-
sities. As expected, an increase in # clearly increases the
hydrophobicity of the polymer and leads to a decrease in
polymer size. For sufficiently low density, it is clear that the
polymer exists only in the globule state. Further, the size of
the polymer decreases monotonically for all # with increas-
ing particle density. This is consistent with theoretical
predictions and simulation results for athermal polymer-
solvent systems, and is due to entropy-induced effective at-
tractive forces between monomers. These results are qualita-

tively consistent with those of the study by Polson and
Zuckermann,60 which used a model potential very similar to
that used here.

Figure 4 shows the variation of the polymer scaling ex-
ponent - with the hydrophobicity parameter # for three of
the ten solvent densities used in the simulations. Generally,
there is a decrease in - upon increasing #. This decrease
reflects the decrease in the polymer size brought about by
increasing hydrophobicity of the polymer in the solvent. The
horizontal dotted in line in the figure indicates the $ condi-
tion where -!1/2. For each case, the system changes from
better-than-$ to worse-than-$ conditions as # increases. Each
dataset has been fit to a quadratic polynomial, which is
shown as the solid lines in the figure. The value of #$ was
found by determining where the quadratic polynomial satis-
fies the $ criterion; equivalently, it is the location where the
curves intersect the dotted line in the figure.

The case of #!0 corresponds to the hydrophilic limit in
this model system. In this limit, all nonbonded interactions
are given by the truncated LJ potential in Eq. !2". Thus, there
is no energy mismatch between the monomers and solvent
particles. From the figure, we note that the scaling exponent
- is consistently lower than the universal good-solvent value
of -20.588. There are probably two main reasons for this
feature. First, it is fully expected that there will be finite-size
effects as a result of the relatively short chain (N!30) em-
ployed in these calculations, as the theoretical value is
strictly valid in the long chain limit. It is likely that the
measured value of - will approach the theoretical value for
longer chains. However, this will only be the case at higher
solvent densities. Note that we have employed a temperature
of T!1 where an isolated !i.e., at %!0) LJ polymer chain is
in the collapsed globule state. At sufficiently high % the at-
tractive monomer-monomer interactions are effectively
screened by the LJ solvent; however, the screening weakens
as the solvent becomes more dilute. Consequently, even in
the hydrophilic limit of #!0 we expect the solvent condi-
tions to worsen with decreasing solvent density. This fact
also accounts in part for the low values of - at #!0.

Table I lists the measured values of #$ for each density.
Figure 5 shows the corresponding phase diagram in the %-#
plane. We find that the location of the transition is % inde-
pendent for %)0.65, but occurs at #$ which decrease ap-

FIG. 3. /Rg
20 vs model parameter # for several densities for the model A

polymer solvent system.

FIG. 4. Scaling exponent - vs hydrophobicity parameter # for the model A
polymer-solvent system for three different solvent densities. The scaling
exponents were obtained from an analysis of the static structure factor for
the polymer chain. The solid lines are fits to a quadratic polynomial. The
intersection of each of the fitted lines with the horizontal line at -!0.5
indicates the location of the $ point.
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proximately linearly with decreasing %. The minimum sol-
vent density at which the coil can exist occurs at %20.45.
Likewise the maximum solvent density for which the coil is
possible occurs at #20.05; thus, the collapse transition can
be driven by a decrease in solvent density for #!&0,0.05' .

The physically meaningful regime corresponds to the
high-% limit, corresponding to the case of liquidlike densi-
ties. The % independence of the transition in this regime is a
noteworthy feature that merits some comment. First, we note
that the coil-globule transition is mainly driven by a compe-
tition between the system energy, which increasingly favors
the globule state at high #, and the configurational entropy of
the chain, which favors the coil state. However, at high %, the
effects of the translational entropy of the solvent are ex-
pected to become more significant. Simulation54–56,58,72 and
theoretical24,64–66,73 studies of athermal polymer-solvent sys-
tems suggest that the explicit presence of the solvent induce
effective attractive forces between monomers which can trig-
ger a collapse of the polymer for sufficiently high solvent
density. Essentially, this means that the degree to which the
solvent entropy favors the globule state increases with %. To
our knowledge, such an entropic collapse transition has
never been observed in simulations using off-lattice
models,74 possibly because it is preempted by the freezing
transition of the solvent. On the other hand, it is conceivable
that such solvent-induced effective attractions in the present
!i.e., not athermal" system could influence the location and

character of the phase boundary at high %. Specifically, we
would anticipate that the globule state would be increasingly
favored at high %, thus shifting the boundary to lower # with
increasing %. If such a feature is present, it is masked by the
statistical uncertainties of the data.

The theoretical predictions of the coil-globule phase
boundary presented in Sec. III B were applied to the model A
polymer-solvent system. Four different calculations were
performed, as described at the end of Sec. III B. As explained
in that section, the calculations differ by choice in the map-
ping between # and 4, and by whether or not fluctuations
about the minimum in the free energy F(5) are accounted
for. The theoretical curves in Fig. 5 are labeled in a manner
consistent with the listing in Sec. III B. At first glance, all
predictions appear to be extremely poor. The prediction that
#$3%"1 is evident in the figure and is in qualitative dis-
agreement with with the fact that the measured #$ is % inde-
pendent for higher densities (%)0.65) and increases with
increasing % at lower densities (0.45(%'0.65). However,
this discrepancy is entirely expected, and can be at least par-
tially understood from the fact that the mapping of the model
parameters onto the 4 parameter in each version of the FH
theory uses the assumption that the polymer-solvent system
is incompressible, and thus that there are are no density fluc-
tuations. For this reason, the predictions should only be ex-
pected to be accurate in the limit of high particle density,
where the density fluctuations are expected to be very small.
As is evident in the figure, the agreement between theory and
simulation is indeed considerably better at high densities.
Consequently, a proper test of the theory is the degree to
which the predicted phase boundary converges to that of the
simulation in the limit of high density. It is noteworthy that
the predictions that use the free energy minimum condition
implicit in Eq. !19" are generally poorer than those which use
Eq. !17" together with the criterion 5̄!1 to impose the $
condition. This result is qualitatively consistent with the fact
that using Eq. !17" to account for fluctuations about the free
energy minimum provides the more accurate approach to de-
termine 5̄ . For longer polymer chains, it is expected that the
predictions from the two methods for determining 5 will
converge. However, for the short N!30 chain considered
here, the two predictions are noticeably different. On the
other hand, Fig. 5 also demonstrates that the two mappings
between 4 and # given in Eqs. !27" and !29" yield predic-
tions which are accurate to a quantitatively comparable
degree.

FIG. 5. Phase diagram of the model A polymer-solvent system in terms of
solvent density % and hydrophobicity parameter # . The coil-globule phase
boundary is constructed from data points obtained from the condition that
the scaling exponent satisfies the $ condition -!0.5. The solid line is in-
cluded as a guide for the eye. As explained in Sec. III B, the four theoretical
phase boundaries have been calculated as follows: !I" Eq. !27"; !II" using
Eq. !17" with the condition that 5̄!1 and Eq. !24"; !III" using Eq. !29"; !IV"
using Eq. !17" with the condition that 5̄!1 and Eq. !28".

FIG. 6. /Rg
20 vs model parameter # for several densities for the model B

polymer solvent system.

TABLE I. Calculated #$ for each particle density for model A and model B.

Model A Model B

% #$ % #$

0.4448*0.0054 0
0.50 0.0126*0.0021 0.0 0.4124*0.0019
0.55 0.0273*0.0017 0.2 0.2834*0.0019
0.60 0.0342*0.0017 0.3 0.2440*0.0018
0.65 0.0496*0.0011 0.4 0.2158*0.0017
0.70 0.0506*0.0011 0.5 0.1835*0.0015
0.75 0.0527*0.0012 0.6 0.1496*0.0021
0.80 0.0532*0.0020 0.7 0.1276*0.0023
0.85 0.0512*0.0026 0.8 0.1112*0.0025
0.90 0.0507*0.0016 0.9 0.1014*0.0027
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We now consider the results for the model B polymer-
solvent model system. Figure 6 shows the average square of
the radius of gyration /Rg

20 versus # for four particle densi-
ties. As expected, an increase in # clearly increases the
hydrophobicity of the polymer and leads to a decrease in
polymer size. The transition is somewhat broad, as a result of
the short chain considered here. Further, the size of the poly-
mer decreases monotonically for all # with increasing par-
ticle density. This is consistent with theoretical predictions
and simulation results for athermal polymer-solvent systems,
and is due to entropy-induced effective attractive forces
between monomers.

Figure 7 shows the variation of the scaling exponents
with # for several different solvent densities. Again, we note
that increasing # clearly increases the degree of the polymer
hydrophobicity as manifested by the corresponding decrease
in -. As in Fig. 4, the datasets have been fit to a quadratic
polynomial, also shown in this figure. The intersection of the
fitting curves with the dotted line, corresponding to the value
of -!1/2 marks the location of #$ for each density. Unlike
the case in model A, we note that #$ consistently increases as
the solvent density decreases. Consequently, the coil state
was observed for sufficiently low # for over the full range of
solvent densities considered, %!&0,0.9' . This is clearly evi-
dent in Fig. 8, which shows the model-B phase diagram in
the %-# plane. The basic features of the phase diagram can be
understood easily upon consideration of the features of the
model. As specified in Eq. !7", at #!0, the monomer-
monomer interactions are solely repulsive in nature. Conse-
quently, in the absence of a solvent there is no mechanism
driving the polymer to collapse, and thus the isolated poly-
mer (%!0) exists in the coil state, unlike the case in model
A, where the attractive monomer-monomer interactions in-
duced a globule state at the temperature used. As specified as
well in Eq. !7", monomer-solvent and solvent-solvent inter-
actions are also purely repulsive, independent of #. As men-
tioned above, no entropy-driven collapse transition has been
observed for repulsive additive-potential polymer-solvent
model systems. Thus, the polymer exists in the swollen coil
state for the full range of solvent densities. On the other
hand, increasing # increases the depth of the monomer-
monomer potential wells, which, for the temperature of T
!1 considered here, is sufficient to drive a collapse transi-

tion. Thus, the coil-globule transition occurs for all densities
considered upon increasing #.

The most interesting feature of the model B phase dia-
gram is the monotonic shift of the phase boundary to lower #
upon an increase in solvent density. Thus, an increase in %
enhances the stability of the globule over the coil state. This
trend is qualitatively consistent with the prediction that in-
creasing solvent density will increase the solvent-induced at-
tractions between monomers.

The theoretical approach of Sec. III B was also applied
to model B. We consider the same four methods for deter-
mining #$ as were used in the analysis of the phase diagram
for model A. The predicted phase boundaries are all shown
in Fig. 8. In contrast to the case for model A, the predicted
phase boundaries do not diverge significantly from the true
boundary as the particle density decreases; rather, the differ-
ence between the two stays roughly constant. However, it
should not be inferred that the theory is inherently more
accurate for model B. At lower particle densities, the system
is far from the incompressible limit, a condition assumed in
the Flory-type theories considered here. The physical origin
of the increase in the stability of the globule state with in-
creasing solvent density is almost certainly due the entropy-
induced effective interactions between monomers, which are
known to increase with density. This effect is expected to be
enhanced somewhat by the slight nonadditivity of the repul-
sive cores of the different potentials, as is evident from Fig.
1, the effects of which has been studied in Ref. 58. By con-
trast, the observed decrease of #$ with % arises from the fact
that 43% in Eqs. !27" and !29", which in turn arises from the
assumed purely enthalpic form of 4 implicit in the theory.
Consequently, it is still only in the limit of high density
where the predictions are expected to be more accurate. As in
the case of the predictions for model A, Fig. 8 demonstrates
that the theoretical curves calculated using Eq. !17" to im-
pose the $ condition are more accurate than those calculated
using Eq. !19". Again, this difference is expected, though it is
also expected to diminish with increasing polymer chain
length. Also, there is no appreciable difference in the accu-

FIG. 7. Scaling exponent - vs hydrophobicity parameter # for the model B
polymer-solvent system for four different solvent densities. The scaling ex-
ponents were obtained from an analysis of the static structure factor for the
polymer chain. The solid lines are fits to a quadratic polynomial. The inter-
section of each of the fitted lines with the horizontal line at -!0.5 indicates
the location of the $ point.

FIG. 8. Phase diagram of the Model B polymer-solvent system in terms of
solvent density % and hydrophobicity parameter #. The coil-globule phase
boundary is constructed from data points !solid circles" obtained from the
condition that the scaling exponent satisfies the $ condition -!0.5. The
solid line is included as a guide for the eye. As explained in Sec. III B, the
four theoretical phase boundaries have been calculated as follows: !I" Eq.
!27"; !II" using Eq. !17" with the condition that 5̄!1 and Eq. !24"; !III"
using Eq. !29"; !IV" using Eq. !17" with the condition that 5̄!1 and Eq.
!28". In addition, the single point labeled !V" shows the theoretical predic-
tion for zero solvent density, which was obtained from direct evaluation of
the free energy virial coefficients appearing in the $ criterion in Eq. !19",
using monomer-monomer interactions.
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racy of the predictions from the 4-# mappings in Eqs. !27"
and !29".

Figure 9 shows the density dependence of the ratio of the
values of #$ for the two models, r.#$

(B)/#$
(A) . The ratio is

large at low %, but rapidly converges to a value of r!2 at
high % . This is exactly the predicted value for the versions of
the Flory-type theory considered here. More specifically, it is
the value predicted by a Flory theory when the random mix-
ing approximation &gMM(r)!gMS(r)!gSS(r).g(r)' is in-
voked, together with the assumption that the radial distribu-
tion function is identical for both models. This intriguing
result is hard to reconcile with the fact that the random mix-
ing approximation is not expected to be particularly accurate.
On the other hand, it seems unlikely to be merely a coinci-
dence, but rather is likely a consequence of a more general,
less restrictive criterion. In addition, it is clear from the fig-
ure that r exhibits an exponential decay; that is, :r.r"2
3exp(";%). The decay constant is determined to be ;
!17.5071. The physical significance of this last observation
is not clear, assuming there is any at all.

The model systems considered in this study have em-
ployed a polymer of length N!30 in a solvent of Ns solvent
particles such that the total particle number is N tot!N$Ns
!1000. This results in relatively small simulation cell size at
the higher densities. Near the $ point and at high %, the cell
size lc is typically lc24Rg . Ideally, the cell size should be
much larger than Rg in order to minimize possible finite-size
effects. Unfortunately, this would also lead to simulations
that are considerably more time consuming than the already
computationally intensive simulations carried out for this
study. However, to gain some degree of insight into the
quantitative effects of increasing the cell size, a few select
additional simulations were carried out for model B at a den-
sity of %!0.8 for system sizes of N tot!123, 143, and 163.

The calculated values of #$ are listed in Table II. Within the
statistical uncertainties, there is no significant difference in
the locations of the $ point for the different systems.

VI. CONCLUSIONS

Two simple polymer-solvent model systems were em-
ployed to study the coil-globule transition. In each case, the
transition is driven by a change in a model parameter #
which generates an energy mismatch between monomers and
solvent particles. The polymer scaling exponent - was deter-
mined from a measurement of the static structure factor in
order to determine the $-point separating the coil from the
globule. The calculated coil-globule phase boundaries were
compared with those predicted from a Flory-type theory us-
ing the free energy F(5) with and without fluctuations about
the free energy minimum, and two different methods to map
the model parameter # onto 4. The theories are only ex-
pected to be valid at high densities, near the incompressible
limit. Generally, it was found that the predictions were quan-
titatively more accurate for the case where 5 was determined
using the full probability distribution associated with the free
energy, rather than from the condition of minimum free en-
ergy. This effect arises as a result of the short chain (N
!30) that was used in the simulations. On the other hand,
neither of the 4-# mappings lead to significantly more accu-
rate predictions. Finally, it was noted that the ratio of the #$
values for the two models at high % was precisely that pre-
dicted by the Flory theory under the random mixing approxi-
mation and with the identical radial distribution functions for
the two models. This is somewhat surprising given the crude-
ness of the random mixing approximation.

Some attempt has been made to address the issue of
finite-size effects in this study by considering the effects of
using larger simulation cell sizes. On the other hand, all
simulations have used relatively short (N!30) polymer
chains. It is not clear how the coil-globule phase boundary
would be affected by increasing chain length. We believe it
to be unlikely that the qualitative features of the phase dia-
grams would change; however, a careful study involving
scaling N would greatly help to resolve this matter. Another
noteworthy limitation of the models is the use of solvent
particles which are the same size as the monomers. It would
be very useful to investigate systems with smaller solvent-
to-monomer size ratios, as this more accurately describes the
polymer-solvent systems in experimental studies of polymer
collapse. Finally, although the simple models employed here
are sufficient to test theoretical predictions of polymer col-
lapse, a more realistic description of the various pair interac-
tions would provide better contact with experimental results.

The Flory-type theory of polymer collapse used in this
study is a simple mean-field theory which should not be
expected to yield particularly accurate predictions. In fact,
the theory performed relatively well in the high density limit.
Still, it would be advantageous to revisit the analysis of the
simulation results using more sophisticated theories of poly-
mers in solution that are designed to be applicable over a
wider range of solvent densities.

FIG. 9. Ratio r.#$
(B)(%)/#$

(A)(%) vs solvent density. The horizontal dashed
line corresponding to r!2 corresponds to the theoretical predictions in both
Eqs. !27" and !29". The solid line is an exponential fit to the data. The inset
shows the same data (:r.r"2) and fit on a semilog scale.

TABLE II. Measured #$ for the model B system at a particle density of %
!0.8 for a polymer of length N!30 for various values total particle number
N tot.N$Ns , where Ns is the total number of solvent particles.

N tot #$

1000 0.1112*0.0025
1728 0.1146*0.0037
2744 0.1167*0.0043
4096 0.1132*0.0031
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APPENDIX: RELATION BETWEEN !
AND THE MODEL PARAMETER "

In this appendix, the theory developed in Ref. 66 is used
to derive the relation mapping the model parameter # onto
the Flory–Huggins 4 parameter written in Eq. !29". The
theory in that study is an extension of the PRISM integral
equation theory developed by Curro and Schweizer.62,75–78
Specifically, the PRISM theory was modified to allow for the
explicit inclusion of the solvent particles. They consider a
bead-spring flexible polymer in a monomeric solvent.
Lennard-Jones !LJ" 6-12 interactions between sites are de-
composed into repulsive and attractive interactions, the latter
of which given by

u5<
att !r "!4)5<

att ! " *5<

r # 12"" *5<

r # 6$ , !A1"

in the regime r+21/6*5< , where r is the distance between
sites 5 and <. The generalized LJ parameter )5<

att corresponds
to the strength of attraction between the sites, while *5< is
related to the size of the two interacting particles. Using an
exact expression for the spinodal condition of a compressible
binary system,71 an expression for the spinodal temperature
was obtained &see Eq. !13" of Ref. 66'. Imposing the incom-
pressibility constraint, as well as the random mixing approxi-
mation, in which the monomer-monomer, monomer-solvent,
and solvent-solvent radial distribution functions are taken to
be equal, the expression for the spinodal temperature reduces
to a form consistent with that predicted by Flory–Huggins
theory,

kBTS!
647*3%

9&

:)

&1/xN$1/!1"x "'
, !A2"

where x is the site fraction of the polymer, and where

:).)mm
att $)ss

att"2)ms
att . !A3"

This corresponds to a 4 parameter given by

4!
327*3%

9&

:)

kBT
. !A4"

In order to employ Eq. !4" in the theory of Sec. III B, the
parameters )mm

att , )ms
att , and )ss

att must be related to the param-
eters appearing in the two models of this study. We choose
the minimum energies of the pair potentials in Eq. !1" for
model A and in Eq. !7" for model B to assign these param-
eters. We note that the depth of the potential energy mini-
mum in the potential u#(r) for model A and for u1"#(r) for
model B is given by (1"#)) and #) , respectively. Conse-
quently, for model A, )mm

att !)ss
att!) and )ms

att!(1"#)) ,

which yields :)!2#) . Likewise, for model B, )ms
att!)ss

att

!0 and )mm
att !#) , which yields :)!#) . Consequently, we

can write

4!
327g%*3)#

9&kBT
, !A5"

where the constant g has values of g!2 for model A and
g!1 for model B.
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